Category: Indices

  • Mastering Indices: Simplify Complex Expressions with Confidence

    Simplify \(\left(\frac{64 x^6}{y^3}\right)^{\frac{2}{3}}\).


    Step 1: Apply the fractional exponent to both the numerator and denominator

    Apply the rule: \(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \).

    Thus: \(\left(\frac{64x^6}{y^3}\right)^{\frac{2}{3}} = \frac{\left(64x^6\right)^{\frac{2}{3}}}{\left(y^3\right)^{\frac{2}{3}}}\).


    Step 2: Simplify the numerator \(\left(64x^6\right)^{\frac{2}{3}}\).

    Apply the rule: \( (ab)^m = a^mb^m \)

    • Split into two parts: \(64^{\frac{2}{3}} \) and \((x^6)^{\frac{2}{3}}\).

    Part 1: Simplify \(64^{\frac{2}{3}}\).

    • Write 64 as a power of 4: \(64 = 4^3\).
    • Then, \(64^{\frac{2}{3}} = \left(4^3\right)^{\frac{2}{3}} = 4^{2} = 16 \).

    Part 2: Simplify \((x^6)^{\frac{2}{3}}\).

    • Use the rule\((x^m)^n = x^{m \cdot n}\)
    • \((x^6)^{\frac{2}{3}} = x^{6 \cdot \frac{2}{3}} = x^4\)

    Thus, the numerator becomes: \(\left(64x^6\right)^{\frac{2}{3}} = 16x^4 \).


    Step 3: Simplify the denominator \((y^3)^{\frac{2}{3}} \).

    • Use the rule \((x^m)^n = x^{m \cdot n}\)
    • \((y^3)^{\frac{2}{3}} = y^{3 \cdot \frac{2}{3}} = y^2\).

    Step 4: Combine the results.

    The simplified expression is: \(\frac{\left(64x^6\right)^{\frac{2}{3}}}{\left(y^3\right)^{\frac{2}{3}}} = \frac{16x^4}{y^2}\).


    Final Answer:

    \({\frac{16x^4}{y^2}}\)

    Laws of Indices

    $$
    \begin{gathered}
    a^m \times a^n=a^{m+n} \\
    a^m \div a^n=a^{m-n} \\
    \left(a^m\right)^n=a^{mn} \\
    a^0=1 \\
    a^{-m}=\frac{1}{a^m} \\
    a^{\frac{m}{n}}=\sqrt[n]{a^m}=(\sqrt[n]{a})^m
    \end{gathered}
    $$

× Whatsapp Tutor Ivan